Boeing Drone: Frame Concepts and Budget

Project 03

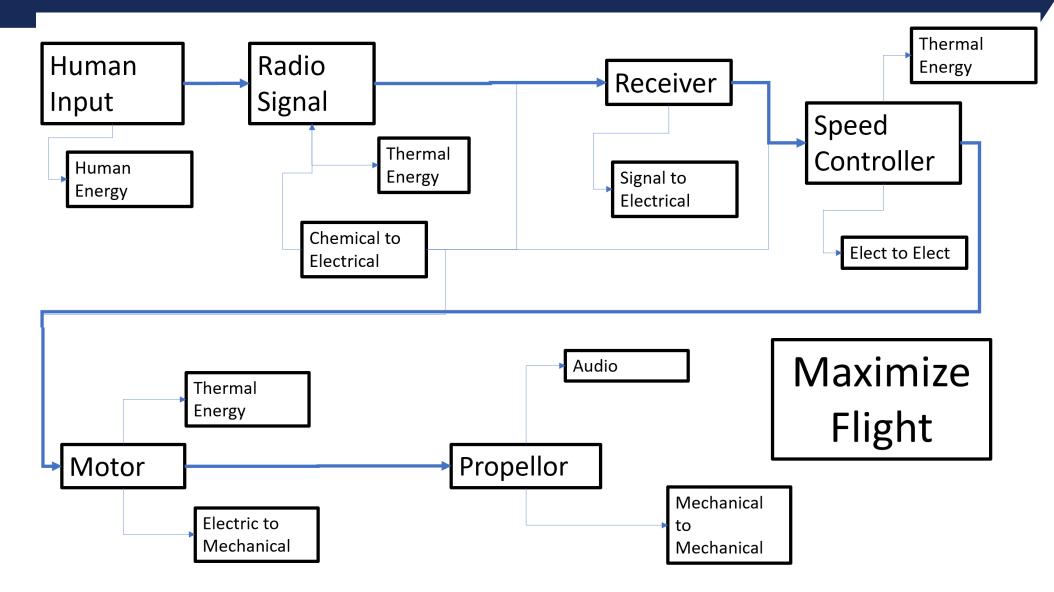
Team Hi-Jacks

Damien Brothers, Dante Faria, Jay Khunt, Colby Murphy, and Thomas Schreiber

Project Description

Design, analyze, and manufacture a 3D printed drone frame that minimizes weight and maximizes flight time using set commercially available components.

- Sponsor: Boeing
- Gain insight into team's academic processes.
- Seek innovative solutions from another perspective.


Black Box Model

- Inputs/Outputs:
 - Material
 - Energy
 - \circ Signals

3, Damien Brothers

Functionality Diagram

4, Dante Faria

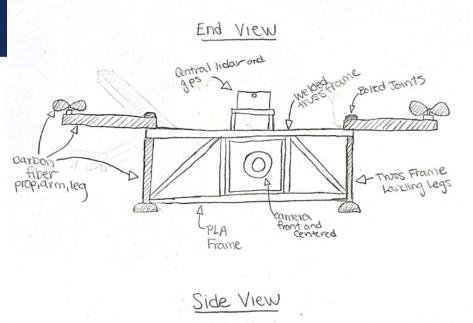
Morph Matrix

Subcategories	Concept 1	Concept 2	Concept 3	Concept 4	Subcategories	Concept 1	Concept 2	Concept 3	Concept 4
Arm Connection Style	Convertion, Cityle Alumidulli, Balls / Hub	Screw-in body components	Phanic world	mechanical connections	Leg Style	Lis drigh Pris losi lon-ener alors the arm	6-flexible legs. Meerball of handleg	Solid progs attached to boly	Legs under propellers connected by truss frame
Material	PLA Plastic	Machined Aluminum	Carbon Aber	Campletely Balsa - wood,	Component Configuration	americ Undernearty middle, hav top mid prop an each arm, motor vater pops	Lider on top, cauce on front, bow keys on boly frome.	Startund on obtes	Hallerits, 1 pr ung Hi char conversion wass,
Body Configuration	Bisis Contraction of the second secon	Lang (th) I link up of the new confermity builty bui	Separat Kgs, separat avans, I body hourd	Ore sold 30 print	Arm Style	Ladern Fiber sube wien energies in the neter	Arm with channel for components	using blow, rechargular atms wis	I-beam Style to nice comportent wires with extra strength

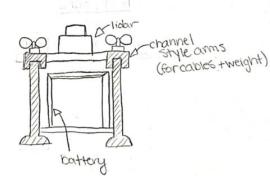
5, Damien Brothers

Concept Evaluation: Pugh Chart

- Criteria was customer and engineering requirements
- All designs were compared to the datum
- Received scores of better (+), worse (-), or Same (S) as datum.


Concept/	Datum –	Design 1	Design 2	Design 3	Design 4	Design 5
Criteria	Boeing					
Lightweight		+	+	-	+	+
Component FOV		-	S	-	S	S
Ease of		S	+	-	+	+
Manufacturing						
Frame		+	+	S	+	+
Strength						
Cost		-	-	-	-	-
Minimized		S	S	+	-	S
Hardware						
Σ +	N/A	2	3	1	3	3
Σ-	N/A	2	1	4	2	1
ΣS	N/A	0	2	-3	1	2

Datum

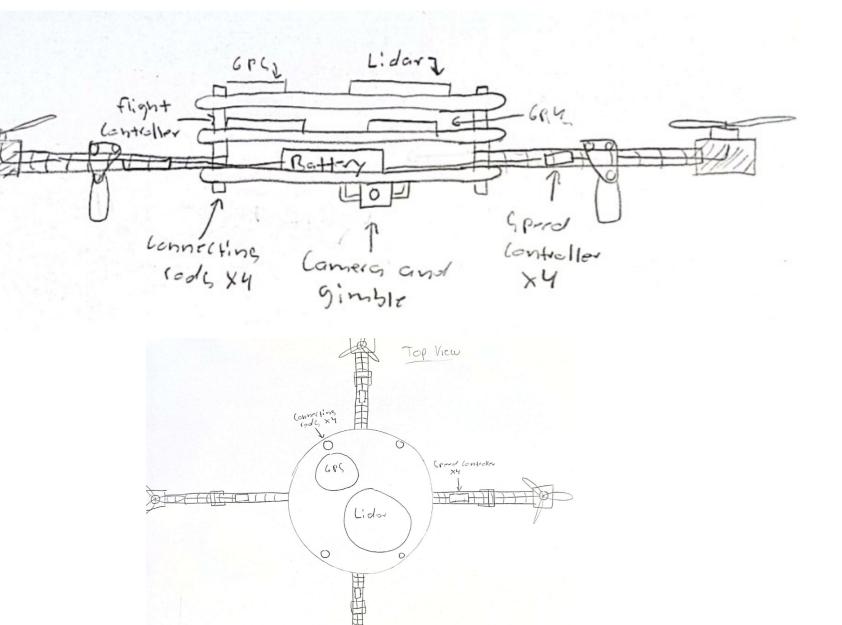

Design 4

Concepts

- Truss Frame w/PLA Material and welded sections
- Legs w/Carbon Fiber Material
- Channel Frame Arms w/Carbon Fiber Material
- Centralized Components
- Bolted Joints

Design 4

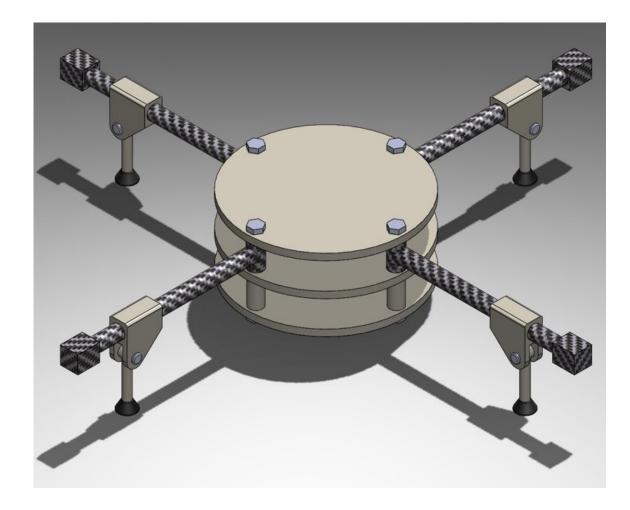
Design 5


Concepts

- Full PLA Plastic body
- No welding and bolts for body to arm connection. 3D printed altogether in one design.
- Specially designed legs with reverse triangular design and flat top which helps smooth landing on any surface.

Design 2

- Circular disc body
- Creates a more central COG
- Carbon fiber arms
- Adjustable landing struts


Concept Evaluation: Decision Matrix

- Top 3 designs made the cut
- Weighted criteria based on importance of customer needs

 Highest weighted score solidifies our final design (for now)

		Design 2		Design 4		Design :	5
Criteria	Weight (%)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score
Lightweight	25	7	1.75	6	1.5	7	1.75
Component FOV	20	8	1.6	7	1.4	7	1.4
Ease of Manufacturing	15	9	1.35	9	1.35	8	1.2
Frame Strength	20	7	1.4	8	1.6	7	1.4
Cost	10	6	.6	5	.5	8	.8
Minimized Hardware	10	5	.5	4	.4	5	.5
Total	100		7.2		6.75		7.05

Simple CAD Design

Bill of Materials

				Bill of Materials					
	Team								
Part #	Part Name	Qty	Description	Functions	Material	Dimensions (in)	Cost (\$)		
1	Body		Body	Body	PLA		340		
2	Hobbytown 40A ESC	4	Speed Controller	Control motor speed			55.99		
3	Gemfan 9045 3-Blade Prop	4	Propeller	Provide lift	Glass Fiber Nylon	9	15.98		
4	Battery Charger	1	Battery Charger	Charge battery			47.97		
5	Battery Connector	1	Batter Connector	Connect battery to electronics			8.99		
6	Socokin 6S Lipo Battery	1	LiPo Battery	Provide power	Lithium Polymer	6.06 x 2.03 x 1.89	73.99		
7	iFlight XING 2814 880KV Motor	4	Motor	Spin propeller	Copper	Stator L: 0.551 Stator D: 0.787 Shaft D: 0.197	154.4		
8	Flysky FS-i6X 2.4GHz RC Trans/Receiver	1	Remote Control	Control drone		6.85 x 3.5 x 7.48	72.99		
9	Slamtec RPLIDAR	1	LIDAR Unit	Light detection and ranging		5.1 x 3.9 x 3.1	99.99		
10	Arducam PTZ Camera	1	Camera Unit	First person control and recording			124.99		
11	2-Axis Brushless Gimbal	1	Camera Gimbal	Stabilize camera		3.15 x 3.15 x 3.15	69.99		
12	NVIDIA Jetson Nano GPU	1	GPU	Process visual data			129.00		
Total Cost Estimate:									
	Cost of Manual Flight Parts								
Required component for footprint on design, cannot be altered (not required to purchase) Required for manual flight, can be altered with similar component if unavailable									

- Cost of body is assuming 100% PLA and a goal of 3 pounds
- Manual flight components are parts required to get off the ground
- Boeing is responsible for other parts and setup

- Budget remaining after 1 manual flight prototype will be around \$4229.69
- Enough budget for 6 manual flight prototypes
- The leftover \$378.14 can be used for surprise expenses and travel costs

12, Tommy Schreiber

References

[1] T. Xometry, "Design guide: CNC Machining," Xometrys RSS, 09-Jul-2021. [Online]. Available: <u>https://www.xometry.com/resources/design-guides/design-guide-cnc-machining/</u>. [Accessed: 09-Oct-2022].

- [2] G. Paulsen, "On-demand webinar: Best practices for metal 3d printing through Binder jetting," *Xometrys RSS*, 24-Jan-2022. [Online]. Available: <u>https://www.xometry.com/resources/blog/on-demand-webinar-3d-printing-metal-binder-jetting/</u>. [Accessed: 09-Oct-2022].
- [3] G. Paulsen, "On-demand webinar: Everything you need to know about vapor smoothing 3D prints," Xometrys RSS, 20-Jan-2022. [Online]. Available: <u>https://www.xometry.com/resources/blog/on-demand-webinar-vapor-smoothing-3d-prints/</u>. [Accessed: 09-Oct-2022].
- [4] S. Ngoh, "On-demand webinar: A deep dive into SLS 3D printing and high-performance materials," *Xometrys RSS*, 20-Jan-2022.
 [Online]. Available: <u>https://www.xometry.com/resources/blog/on-demand-webinar-deep-dive-sls-3d-printing/</u>. [Accessed: 09-Oct-2022].
- [5] S. Ngoh, "On-demand webinar: When to choose 3D printing vs. machining," Xometrys RSS, 09-May-2022. [Online]. Available: <u>https://www.xometry.com/resources/blog/on-demand-webinar-3d-printing-vs-cnc-machining/</u>. [Accessed: 09-Oct-2022].

[6] "Articles," Fictiv. [Online]. Available: https://www.fictiv.com/articles. [Accessed: 09-Oct-2022].

[7] "Research guides: Creating at Cline Library: 3D Printing," 3D Printing - Creating at Cline Library - Research Guides at Northern Arizona University. [Online]. Available: <u>https://libraryguides.nau.edu/creating/3D-printing</u>. [Accessed: 09-Oct-2022].

[8] "Ansys Learning Hub - learn from experts at your own pace." [Online]. Available: <u>https://www.ansys.com/services/ansys-learning-hub</u>. [Accessed: 10-Oct-2022].

[9] "Introduction to Ansys (Part1) : Starting Ansys Workbench," YouTube, 24-Aug-2019. [Online]. Available: <u>https://www.youtube.com/watch?v=C8WvCQpzT2A</u>. [Accessed: 09-Oct-2022].

[10] "Introduction to Ansys (PART2) : Creating your first 3D model," YouTube, 24-Aug-2019. [Online]. Available: <u>https://www.youtube.com/watch?v=FwKkjAr9Kbk</u>. [Accessed: 09-Oct-2022].

[11] "Introduction to Ansys (PART3) : Starting the mechanical interface," YouTube, 24-Aug2019. [Online]. Available: <u>https://www.youtube.com/watch?v=6QaFX1CG-ZE</u>. [Accessed: 09-Oct-2022].

[12] "Introduction to stress analysis | ansys innovation courses." [Online]. Available: <u>https://courses.ansys.com/index.php/courses/stress-analysis/lessons/lesson-2-about-</u> <u>stressanalysis/</u>. [Accessed: 10-Oct-2022].

[13] D. Durston, "SolidWorks equations - create more intelligent parts". YouTube, 2013. Available: <u>https://www.youtube.com/watch?v=r0lGDwCQKqU</u>. [Accessed: Oct-9-2022].

[14] R. Wood, "Solidworks Design Tables Made Easy," *GoEngineer*, 21-Mar-2022. [Online]. Available: <u>https://www.goengineer.com/blog/solidworks-design-tables-made-easy</u>. [Accessed: 09-Oct-2022].

[15] S. Durksen, "Using a multiple unit system in Solidworks equations," *The Javelin Blog*, 14-May-2015. [Online]. Available: <u>https://www.javelin-tech.com/blog/2015/05/multiple-unit-system-equations-video/</u>. [Accessed: 09-Oct-2022].